2004 Vol. 6, No. 20 3465-3467

Regioselective Cross-Metathesis Reaction Induced by Steric Hindrance

Samir BouzBouz,* Rebecca Simmons, and Janine Cossy*

Laboratoire de Chimie Organique associé au CNRS, ESPCI, 10 rue Vauquelin, 75231 Paris Cedex 05, France

samir.bouzbouz@espci.fr; janine.cossy@espci.fr

Received May 19, 2004

ABSTRACT

OR'
$$R = H, Ph$$

$$R' = TBDPS, TBDMS$$

$$R'' = EWG, CH2EWG, (CH2)2OH$$

When hexa-1,5-dien-3-ol is protected with bulky groups, a regioselective cross-metathesis reaction can take place at the C5-C6 double bond.

In the past decade, olefin cross-metathesis has gained a position of increasing significance.¹ As an acyclic carbon—carbon double-bond-forming tool, cross-metathesis has numerous advantages. It requires in general 1–5 mol % catalyst, and a wide range of functional groups are tolerated.² The reaction is efficient in atom economy, as the only byproduct formed is gaseous ethylene. Furthermore, high levels of chemo-, regio-, and stereoselectivity can be attained as well as high yields.³ As tetrafibricin,⁴ lienomycin,⁵ and amphidinol 3⁶ are constituted by several units of type **A**, we became interested in obtaining these units from hexa-1,5-dien-3-ol by using chemo- and regioselective cross-metathesis reactions. Recently, we reported that a chemoselective cross-metathesis reaction can take place between 3-acetoxy-hexa-1,5-diene **B** and acrolein, to produce a single cross-

coupling product \mathbb{C}^7 when promoted by the commercially available catalyst \mathbb{H}^8 (Scheme 1).

Scheme 1. Chemoselective Cross-Metathesis Reaction

The selectivity observed might be due to deactivation of the double bond at C1-C2 by the electron-withdrawing

⁽¹⁾ For a recent review on cross-metathesis, see: Connon, S. J.; Blechert, S. *Angew. Chem., Int. Ed.* **2003**, 42, 1900. See also: Hoveyda, A. H.; Gillingham, D. G.; Van Veldhuizen, J. J.; Kataoka, O.; Garber, S. B.; Kingsbury J. S.; Harrity J. P. A. *Org. Biomol. Chem.* **2004**, 2, 8.

Kingsbury J. S.; Harrity J. P. A. *Org. Biomol. Chem.* **2004**, 2, 8. (2) (a) Schwab, P.; France, M. B.; Ziller, J. W.; Grubbs, R. H. *Angew. Chem., Int. Ed. Engl.* **1995**, *34*, 2039. (b) Schwab, P.; Grubbs, R. H.; Ziller, J. W. *J. Am. Chem. Soc.* **1996**, *118*, 100. (c) Belderrain, T. R.; Grubbs, R. H. *Organometallics* **1997**, *16*, 4001.

⁽³⁾ Chatterjee, A. K.; Choi, T.-L.; Sanders, D. P.; Grubbs R. H. *J. Am. Chem. Soc.* **2003**, *125*, 11360.

⁽⁴⁾ Kamiyama, T.; Umino, T.; Fujisaki, N.; Fujimori, K.; Satoh, T.; Yamashita, Y.; Ohshima, S.; Watanabe, J.; Yokose, K. *J. Antibiot.* **1993**, 46, 1039

⁽⁵⁾ Gauze, G. F.; Maksimova, T. S.; Olhovatova, O. L.; Kudrina, J. S.; Iltchenko, G. B.; Kotchetkova, G. V.; Volkava, L. I. *Antibiotiki* **1971**, *5*, 387

⁽⁶⁾ Murata, M.; Matsuoka, S.; Matsumori, N.; Paul, G. K.; Tachibana, K. J. Am. Chem. Soc. 1999, 121, 870.

⁽⁷⁾ BouzBouz, S.; Cossy, J. *Org. Lett.* **2001**, *3*, 1451.
(8) (a) Kingsbury, J. S.; Harrity, J. P. A.; Bonitatebus, P. J., Jr.; Hoveyda,

A. H. J. Am. Chem. Soc. **1999**, 121, 791. (b) Garber, S. B.; Kingsbury, J. S.; Gray, B. L.; Hoveyda, A. H. J. Am. Chem. Soc. **2000**, 122, 8168.

Scheme 2. Regioselective Cross-Metathesis Reaction

acetoxy group or because an unreactive six-membered chelate ${\bf D}$ is formed that results in a selective cross-metathesis of the homoallylic unit (Scheme 1).⁷

Here, we would like to report that regioselectivity can be induced by steric hindrance and that a regioselective crossmetathesis reaction, promoted by ruthenium catalyst **II**, can take place between protected hexa-1,5-dien-3-ols of type **E** and olefins of type **F** when the hydroxy protecting group in **E** is bulky such as with the *tert*-butyldiphenylsilyl or the *tert*-butyldimethylsilyl (Scheme 2).

All cross-metathesis reactions were performed under argon in CH_2Cl_2 at reflux in the presence of 5 mol % catalyst II, 1 equiv of the protected hexa-1,5-dien- 3-ol of type E, and 3 equiv of various olefins of type F to produce compounds of type G.

Our preliminary studies focused on *tert*-butyl-diphenyl-silyloxy-3-hexa-1,5-diene **1** and various electron-deficient olefins. When **1** was treated with catalyst **II** in the presence of acrolein, the unsaturated aldehyde **4** was isolated in 56% yield and with excellent stereoselectivity (*E/Z* ratio of 20/1) as observed by ¹H NMR spectroscopy and GC/MS (Table 1, entry 1). This result led us to examine the cross-metathesis reaction of **1** with other various electron-deficient olefins such as ethyl acrylate, acrylic acid, ethyl vinyl ketone, and acrylonitrile. The results are summarized in Table 1.

Excellent yields (>70%) and (E)-stereoselectivity were attained (E/Z=20/1) except when **1** was treated with acrylonitrile, where a low yield of **8** was obtained (23%). Furthermore, the major stereoisomer was the (Z)-isomer and the degree of stereoselectivity was low, as the ratio Z/E was 3/1 (Table 1, entry 5). As in previous cross-metathesis reactions with acrylonitrile, the (Z)-stereoselectivity must be kinetically controlled or related to the presence of the electron-withdrawing properties of the cyano substituent. It is worth noting that cross-metathesis products involving the C1–C2 double bond of **1** were not detected in the reaction media. The regioselectivity of the cross-metathesis reaction between **1** and electron-deficient olefins can be attributed to steric effects imposed by the silyl ether group adjacent to the allylic functionality.

The cross-metathesis reaction of 3-silyloxyhexa-1,5-diene **2** with ethyl acrylate and acrylic acid was also examined. As with compound **1**, excellent yields and (*E*)-stereoselectivity were obtained in the preparation of **9** and **10** (Table 1,

Table 1. Cross-Metathesis Reaction between 3-Silyloxyhexa-1,5-dienes and Various Electron-Deficient Olefins

Entry F	OR'	EWG R	OR' EWG	Yield%	% <i>EIZ</i>
1	OTBDPS	o ⊢ H	OTBDPS O	56	20/1
2	1	OEt	OTBDPS O	71	20/1
3	1	ОН	OTBDPS O 6 OH	81	20/1
4	1		OTBDPS O	76	20/1
5	1	 CN	OTBDPS CN 8	23	1/3
6 _{Ph}	OTBDPS 2	OEt Phr	OTBDPS O	78	20/1
7	2	OH Ph	OTBDPS O	83	20/1
8	OTBDMS	₩ H	OTBDMS O	52	20/1
9	3	○ OEt	OTBDMS O	77	20/1
10	3		OTBDMS O	80	20/1

entries 6, 7). Other bulky silyl protecting groups, such as a *tert*-butyldimethylsilyl ether, can also be used to protect the C1–C2 double bond of hexa-1,5-dien-3-ol. When the *tert*-butyldimethylsilyloxy-3-hexa-1,5-diene **3** was treated with **II** in the presence of acrolein, ethyl acrylate, and ethyl vinyl ketone, the cross-metathesis compounds **11–13** were obtained in good yields and with good stereoselectivity (E/Z = 20/1) (Table 1, entries 8–10).

 β , γ -Unsaturated ester, acid, alcohol, and cyano compounds were also examined as cross-metathesis partners to study the influence of the remote position of a polar group on the course of the reaction. The results are reported in Table 2. When compound 1 was treated with 14–16 in the presence of catalyst II, the corresponding cross-metathesis compounds 18 (80%), 19 (77%) and 20 (48%) were respectively isolated with very good regioselectivity but with moderate stereoselectivity (E/Z=3/1) (Table 2, Entries 1–3). The presence of a cyano group decreases the yield of the cross-metathesis product as evidenced by the reaction between 1 and allylcyanide 17, which led to compound 21 in low yield (23%)

3466 Org. Lett., Vol. 6, No. 20, 2004

^{(9) (}a) Crowe, W. E.; Zhang, Z. J. J. Am. Chem. Soc. 1993, 115, 10998.
(b) Crowe, W. E.; Goldberg, D. R. J. Am. Chem. Soc. 1995, 117, 5162.
(10) Randl, S.; Gessler, S.; Wakamatsu, H.; Blechert, S. Synlett 2001, 430.

Table 2. Cross-Metathesis Reaction between 3-Silyloxyhexa-1,5-diene 1 and Olefins 14–17

and with an E/Z ratio of 3/1 in favor of the (E)-isomer (Table 2, entry 4).

Since the enoate double bond is deactivated by the electron-withdrawing carbonyl group, and as cross-metathesis reactions can be performed without the protection of hydroxy groups, it should be possible to transform hexa-1,5-dien-3-ol, via compound 5, to the functionalized 1,5-diene 23, which could be an important precursor for the synthesis of many natural products (Scheme 3).

To verify this hypothesis, compound **5** was deprotected with tetra-*n*-butylammonium fluoride (THF at 25 °C) to produce alcohol **22** in 40% yield, and this compound was

Scheme 3. Functionalization of Hexa-1,5-dien-3-ol Using Cross-Metathesis Reactions

then treated with acrolein in the presence of catalyst **II** to produce the expected product **23** in 63% yield.

The cross-metathesis reaction was regioselective, as the dialdehyde was never observed (Scheme 3). This result implies that catalyst **II** does not insert into the double bond that is connected to an electron-withdrawing group but inserts instead into the terminal double bond to form a ruthenium complex that can react with acrolein to produce **23** (Scheme 3).

In conclusion, regioselective cross-metathesis reactions can occur with protected hexa-1,5-dien-3-ols when they are protected by sterically hindered groups such as *tert*-butyl-diphenylsilyl or *tert*-butyl-dimethylsilyl groups. Furthermore, good stereoselectivity is observed with electron-deficient olefins, and poor stereoselectivity is obtained with olefins having polar functionalized groups at the β -position. Regioselective cross-metathesis reactions will be used in the synthesis of natural products, and the results will be reported in due course.

Acknowledgment. We thank Dr. R. A. Fisher (Materia, Inc.) and Prof. A. H. Hoveyda for generous gifts of catalyst **II**

OL049079T

Org. Lett., Vol. 6, No. 20, **2004**